Math and High School Biology….

Way back in the mid-80′s I attended a summer NSF institute that was structured to include math, physics, chemistry and biology teachers.  Each day we’d concentrate on our separate disciplines but occasionally we’d have evening programs that brought us all together.  One of those evening programs included a panel discussion that explored math/science curricular integration.  Of course the folks that organized the panel discussion were looking for primarily math applications in physics and chemistry thinking there really was not that much “math” in biology.  That night I was asked at the last minute to sub in for the biologist representative on the panel.    As the biology teacher’s representative, I decided to represent what I thought math in biology education should be–not what it was.  It was my first public foray into trying to increase math applications in biology.  I don’t know why it is but there are times when controversy just seems to seek me out.

I dutifully waited my turn to pounce speak as the physics rep discussed the need for at least Algebra II skills and the chemistry teacher calling for at least Algebra I skills as prerequisites for their course–lamenting that even with these standard requirements, the students seem to have much difficulty “keeping track of units”, with proportional thinking, and with novel problem solving.  Generally, the argument presented was that physics and chemistry were math intensive–much like one long story problem.  I’ve taught all three courses and I didn’t really have any argument with most of their claims but it stuck in my craw as repeatedly the math, physics, and chem panel members kept referring to biology as the science that could be taught without a math emphasis—it still sticks in my craw. (I know, I know…a biologist shouldn’t really be implying that he has a crop–it’s just one of those homey, Kansas euphemisms.)

I went on to propose ideas for math applications across the broad scope of biology topics–Exponential functions/ equations, modeling, algebra in Hardy-Weinberg work, Fibonacci numbers, geometry, statistics and probability.  Not really demonstrating good political skills I went on in an accusatory fashion—”Why is it that the first exposure my students have to statistics and probability happens in my biology class?”  (Remember this was the 80′s.)  Obviously, the idea of math informing beginning biology instruction did not begin with me but you would have thought the audience had been suckered punched.  They were nodding their heads in agreement and about to start a constructive dialog when one of the old guard recovered quickly enough to dismiss my claims as being too unrealistic–I was jousting at windmills.  (This was also before Physics First or biotech investigations.)  Momentum lost for that round I learned my lesson and have been more politic in my approach.  To that end the landscape has changed a great deal, today.   However, despite supportive National Math Standards, Physics First curriucla, more AP courses taught, and numerous university or secondary level NSF projects funded to integrate more math in biology, it still seems that most biology teachers avoid math at all costs.  What’s my evidence?–no real hard data, just anecdotal experiences while trying to promote math and computer applications in the biology community.  Teachers are not, necessarily to blame.  I wish I could show you the looks on my student’s faces when they find out I expect some math application in biology.

My plan is to present a few posts that explore very basic math applications in biology–perhaps it will start a converstation….

In the meantime, here’s a warm-up from NABT member and former editor for the American Biology Teacher, John Junck:

10 Equations That Changed Biology (And That Should Change Biology Education)
Remember, there are only 10 kinds of people in the world—those that understand binary numbers and those that don’t.

Photo:  Brad Williamson, aka--ksbioteacher

1 Comment »

  • bobmelton says:

    I have always liked the 10 kinds of people line and have it posted outside my office. I enjoy watching visitors (and my liberal-studies colleagues) as they read the sign. Some chuckle, others wrinkle their nose and look at me derisively, still others just turn to me and say “I don’t get it”. Maybe they were in school in the 70′s?

    My favorite saying, however, is “All good science ends in aftermath”.

RSS feed for comments on this post. TrackBack URL

Leave a Reply

You must be logged in to post a comment.