Increased Viscosity of Greek Yogurt Inoculate Among Yogurts Containing Streptococcus thermophilus and Lactobacillus bulgaricus

PRESENTER: Jacqueline Raetz-Vigon

BACKGROUND:

- Yogurt- generally dairy fermented by *S. thermophilus* and *L. bulgaricus* (Zhao et al., 2022)
- S. thermophilus- facultative anaerobe and safe
- opportunistic bacterial pathogen (Dan et al., 2018) L. bulgaricus- cannot effectively break down lactose
- by itself (Dahlan & Sani, 2017)
- Plain yogurt- milk lightly heated, starter culture
- added, split into servings (Smith, 2015)
- Vanilla- flavor added
- Greek- same fermentation, strained with cloth to eliminate whey and thicken (Delany, 2018)
- French-Fermented in small glass jars (Rossman, 2017)
- Hypothesis: differences in bacterial types, strains, and ratios and/or differences in production could cause differences in inoculate viscosity (Ha: Inoculate with Greek most viscous; H0: No difference)

METHODS

Figure 1. Yogurt Making: 2tbsp of one of the four starting culture treatments was added to each of four containers of lightly heated milk and incubated in the oven with the light on for 8 hours. They were then refrigerated for 24 hours. There were 3 biological replicates per inoculate.

Figure 2. Viscosity Assay-Splat Test: Each person performed 5 technical replicates for each inoculate on each test for a total of 15 replicates per inoculate per test. Dropped yogurt from a height of 5 feet and 2 feet and measured the diameter of the yogurt (Figure 2B from Kuzmenko et al., 2022)

RESULTS

The 5-foot and 2-foot splat tests yielded slightly different results, but the two foot splat test appeared to be more reliable.

Greek yogurt starter when dropped from a height of 2 feet 5-foot splat test

Figure 3. "Splat" of inoculate with **Figure 4.** "Splat" of inoculate with Greek yogurt starter when dropped from a height of 5 feet

Table 1. The standard deviations of splat diameter for the 2-foot splat
 test were very small and generally lower than those of the 5-foot splat

Yogurt Starter Type	Plain	Vanilla	Greek	French
Standard Deviation for 2-foot splat test	0.025	0.015	0.021	0.046
SD for 5-foot splat test	0.091	0.025	0.030	0.025

Different yogurt starters make yogurts of different viscosity, with the Greek yogurt starter creating the most viscous inoculate.

Using the 2-foot splat test and an ANOVA, all yogurt viscosities were found to be significantly different. Yogurt from a Greek starter was most viscous, followed by that of the vanilla starter, French starter, and plain starter.

Figure 5. The Analysis of Variance test had an F-value of 472.69; a p-value of less than .0001; and degrees of freedom of 3,8.

Figure 6. Upon qualitative observation, Greek yogurt was by far the thickest, which was consistent with the results of the 2-foot splat test

Take a picture to view the full paper

Types of Yogurt

DISCUSSION

Upon reviewing the literature, we believe a combination of bacterial differences, production differences, and sugar content differences are responsible for the varying inoculate viscosity.

Bacteria:

- Different types of bacteria can change the viscosity of yogurt (Dahlan & Sani, 2017)
- **Table 2:** Comparison of Bacteria in Starter
 Yogurt Culture

Plain	Vanilla	Greek	French
S. thermophilus	L. bulgaricus	S. thermophilus	L. bulgaricus
L. bulgaricus	L. lactis	L. bulgaricus	S. thermophilus
L. acidophilus	S. thermophilus		
B. bifidus	(and probiotic bacteria)		
L. casei			

Production:

Can explain Greek and French differences but not plain and vanilla

Sugar:

- Higher sugar concentration causes greater thickness (Prawiti et al., 2020)
- Table 3: Comparison of Sugar Concentration in
 Starter Yogurt Cultures

0 0 0 0 0 0 0 0 0 0						
Plain	Vanilla	Greek	French			
.75g/oz	3g/oz	1.13g/oz	3.02g/oz			

REFERENCES

- Dahlan, H.A., & Sani, N.A. (2017). The interaction effect of mixing starter cultures on homemade natural yogurt's pH and viscosity. International Journal of Food Studies, 6(2).
 - https://doi.org/10.7455/ijfs/6.2.2017.a3
- Dan, T., Jin, R., Ren, W., Li, T., Chen, H., & Sun, T. (2018). Characteristics of Milk Fermented by Streptococcus thermophilus MGA45-4 and the Profiles of Associated Volatile Compounds during Fermentation and Storage. Molecules (Basel, Switzerland), 23(4), 878. https://doi.org/10.3390/molecules23040878
- Delany, A. (2018, January 13). This Is the Only Difference Between Greek Yogurt and Regular Yogurt. Retrieved September 28, 2020, from https://www.bonappetit.com/story/what-is-greek-yogurt
- Kuzmenko, T., Raetz-Vigon, J., & Willette, D. A. (2022). At-Home Yogurt Making to Investigate Microbiology Concepts: A Remote Biology Laboratory. The American Biology Teacher, 84(5), 290-296. https://doi.org/10.1525/abt.2022.84.5.290
- Rossman, Sean. (2017, July 6). What Is French Yogurt and Is It the New Greek? USA Today, Gannett Satellite Information Network, 6 July 2017, https://www.usatoday.com/story/money/nationnow/2017/07/06/what-french-yogurt-and-new-greek/439935001/
- Pratiwi, W.M., Nasrulia, F., Aprillia, J.Z., Sanora, G.D., & Kartika, I.N. (2020). Sensory Evaluation of Yogurt in Various Sugar Concentration. Food ScienTech Journal, 2(1), 9–11. https://doi.org/10.33512/fsj.v2i1.7328

Smith, Diana K. (2015). "Yogurt Made Simple." Washington State University Extension. extension.oregonstate.edu/sites/default/files/documents/8836/fs1 73emakingyogurt.pdf.

Zhao, J. C., Mu, Y. L., Gu, X. Y., Xu, X. N., Guo, T. T., & Kong, J. (2022). Sitedirected mutation of β-galactosidase from Streptococcus thermophilus for galactooligosaccharide-enriched yogurt making. Journal of Dairy Science, 105(2), 940–949. https://doiorg.electra.lmu.edu/10.3168/jds.2021-20905

Jacqueline Raetz-Vigon; Tatiana Kuzmenko, M.S.; Anna Maria Brodkey; and Jose Gurdian

